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J .  Phys. A Math. Gen. 25 (1992) L673-L677. Printed in the UK 

LEVER TO THE EDITOR 

Hydrodynamical reductions of the lattice KP hierarchy 

B A Kupershmidt 
The University of Tennessee Space Institute. Tullahoma, TN 37388, USA 

Received 25 February 1992 

Abstract. Hydrodynamic reductions are found for the lattice K P  hierarchy and its zero- 
dispersion limit. This is similar to the continuous case where the reductions result in the 
dispersive water waves and Benney hierarchies respectively. 

The continuous K P  hierarchy [l] is the system of Lax equa" x n s  

%=[(",91 m E N  
_:.L .LA I ._...... wiin iiic Lax upcraiui 

m 

2=[+ 1 C-'-'A, .$=a= alax A, = A,(x, 1 ) .  
,=0 

In the quasiclassical (=zero-dispersion) limit [2] one gets the so-called Benney 
hierarchy [3] 

g = p +  2 A,p-'-' (2) 
i 3 0  

g,, ={(",a 
with the Poisson bracket [ ,} being the standard one: 

11; g )  =l& -Lg.,. 

$At,, = A;+B,x+iAi-iAo,.y i E Z +  (3) 

For the case m = 2, one gets from (2) the Benney system proper [4]: 

which results upon taking the moments 

Ai= u ' d y  u = u ( x , y ,  1) h = h ( x ,  t )  (4) I: 
of the free-surface long wave (2 + 1)-dimensional hydrodynamical system [4] 

= uu,, + h,= - loy dy 

For aii other m, one has simiiar (2 + i j-dimensionai hydrodynamicai representations 
of the Benney hierarchy (2) [31. 

In the case when the velocity U is y-independent, the moment map (4) becomes 

A, = hu' [=Ao(A,/Ao)'I ( 5 )  
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the Lax operator 2 ( 2 )  becomes 

and one arrives at an a priori non-obvious conclusion that the infinite system ( 3 )  and 
its higher analogues (2) have two-component hydrodynamical reductions (which, 
moreover, are Hamiltonian [ 3 ] ) .  The full KP hierarchy ( I ) ,  of which the Benney 
hierarchy (2) is the quasiclassical limit, also has a hydrodynamical reduction 

Ai= h ( J + u ) ' ( l )  (7) 
which is also Hamiltonian [SI. For m = 2 ,  one gets the so-called dispersive water waves 
(DWW) system [ 5 ] :  

u , , = ( u ' + ~ ~ - u , , ) . ,  I h,, = (2uh +h,x) , , .  

The reduction (5 )  is, thus, the zero-dispersion limit of the dispersive reduction (7). 

K P  hierarchy [6,7] 
The purpose of this letter is to work out hydrodynamical reductions of the lattice 

L., = [ ( L " ) + ,  Ll m E N  (8) 

with the Lax operator 
m 

L = l +  1 ail-' .  
i=o 

Here l is the operator version of A, A itself being the dual to the shift: 

rf= A ' ( f ) r  

( h ' f ) ( n ) = f ( n + s )  ( h ' f ) ( x )  = f ( x + s A x )  n , s E Z  

a , ,  = ( A -  l ) ( a j + , ) + a j ( l  -A- ' ) (au)  i E Z + .  (9) 

a .  ,,? = a .  + iaja0,, ;EH+. (10) 

ai = hu' i € Z +  (11) 

(12) [ h,, = (uh), , .  

For the first flow m = 1, the Lax equation (8) is 

In the quasiclassical limit A = exp( E a ) ,  one gets from (9) 

It is easy to check that the latter system allows the hydrodynamical reduction 

u , , = u ( u + h ) , ,  

Similarly, the full system (9) is found, after some experimentation, to have the hydro- 
dynamical reduction 

Clearly, the quasiclassical limit of formulae ( 1 3 ) ,  (14) yields formulae ( l l ) ,  ( 1 2 )  
respectively. 
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What is the general fact applicable to the whole hierarchy (8) and to its quasiclassical 
limit 

{ A  g h = P ( f p g , x - ~ x g , p )  

which, Cor m = i ,  reduces to the iormuiae ( i i j - ( i4)?  i e t  us start with the simpier 
zero-dispersion case first. The Hamiltonian structure B = (B,) of the lattice Lax 
hierarchy (8) is [6,7] 

(16) B, = A'a,, - a,+,h-'. 

This means that the motion equation (8) can be recast into the form 

with 

H = H , , , + , = -  1 Res( L"+') 
E + !  

Res being the operation singling-out the ('-term. In the zero-dispersion limit, the 
Hamiltonian matrix (16) becomes 

B. .=ia .  'I I+, .a+Jja .  I+,. (17) 

The Hamiltonian matrix (17) is of the type associated with Poisson manifolds [8]. By 
formula (38) in [SI, the reduction map (11) i s , a  Hamiltonian map between the 
Hamiltonian matrices (17) and 

- 

y) .  
In other words, the reduction map (1 1) is self-consistent and converts the quasiclassical 
limit (15) of the lattice KP hierarchy into the integrable commuting Hamiltonian 
hierarchy 

u , ~  = u J ( s f i / s h )  f i , (  = a ( u s f i i / s u )  

where 

Res( i'"+') - 1  H = -  
m + l  

i = p  + 1 hu'p-' = p  + h p / (  p - U). . .  

i > O  

We can now handle the fully discrete case. Let 

0 

be a Hamiltonian matrix in the (U, h )  space. Then the map (13) is a Hamiltonian map 
between the Hamiltonian structures 5 (20) and B (16). 
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Prmoof: Let J be the Fr6chet derivative of the map (13). We have to check that [7] 

JEJ' = B 

where Jt is the adjoint of J. In long hand, we have to verify that 

where it is understood that ai's are expressed through U and h. Using the identities 

Dai- 1 
a, -- Da, l - A - ' l  -- -ai- - 

DU l - A - ' u  D h  

the equality ( 2 1 )  becomes 
ag(h- 'A;-A- lh- ' )a .  =AJa .  3 +I . -  ai,A-' 

which decomposes into the pair of equivalent identities 

(a{ /h) ( - j1aj  = al+, 

a,(aj/ h)"" = a!,. 

But 

(at /h) ( -J)aj  [by (13)] 

which is (23a) 

Thus, the hierarchy of lattice hydrodynamical Lax equation 

L,,=[(i?+, i l  m e N  

= I +  h ( 1 -  U<-')-' 
is an integrable hierarchy with the Hamiltonian structure 

u , , = u ( l - A - ' ) ( S f i / S h )  h,* = ( A -  I)(uSfi/Su) 

- 1  HE- Res[( i)""]. 
m + l  

In particular, for m = 1, 
h2 
2 fi = f Res i2 = f Res(s + h + hub-' +. . .I2 --+ uh 

U 

(24) 

and we recover the system (14). 
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Remark. The Hamiltonian matrix (20) of the hydrodynamical reduction ofthe lattice 
K P  hierarchy is identical to the first Hamiltonian structure of the Toda lattice hierarchy 
under the identification 

U = a, h = a. 

One gets the Hamiltonian Toda matrix as the 2 x 2  submatrix O s i ,  jS1 of the 
Hamiltonian matrix (16) upon letting {a ,=OlVr>  1). 

Remark. One can show that the hydrodynamical reduction (13) is unique in the class 
of formulae 

(26) a, = h'C' )  n ,,-,"!/,,-"L!, 

r=o 
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